Delineation of infections in a university hospital by bacteria producers of metalobetalactamases: mapping the enemy!

Authors

DOI:

https://doi.org/10.30968/rbfhss.2023.144.0979

Abstract

Objetive: to determine the prevalence of metallo-beta-lactamase (MBL) infections, as well as to outline the epidemiological, clinical, and microbiological profile of these infections and the therapeutic approaches used to combat them in a hospital in Ceará, Brazil, during the period of 2021 and 2022. Methods: A cross-sectional retrospective study was conducted. Systematic data collection was performed from medical records of hospitalized patients, which were subsequently stored in a database. All patients admitted to the ward or ICU who were diagnosed with MBL infection based on microbiological tests conducted after 48 hours of hospitalization were  included in this study. According to these criteria, 79 patients were included in our study. The data were evaluated based on their absolute frequency (n), relative frequency (%), and measures of central tendency. Results: The prevalence of MBL infections among all resistant infections was 47,9%. The average age of the patients was 61.8 years, and the male gender was the most affected (65,8%). The medical clinic had the highest number of cases (20,3%). In 40,5% of the cases, patients were using mechanical ventilation. Blood culture was the most prevalent microbiological test (38%) for diagnosing the infections. Neoplasms were the main cause of patient admissions (34%). The most isolated bacterium was Klebsiella pneumoniae (65,8%), and the prevalent resistance gene was New Delhi Metallo-beta-lactamase (NDM), present in 77,2% of cases. The isolates showed resistance to almost all tested antimicrobials (AMs). The most effective AMs in vitro against these infections were colistin, gentamicin, and amikacin. Polymyxin B was the most commonly used AM, comprising either entirely or partially the treatment for 41,8% of patients. The mortality rate was 43%. Thus, we report for the first time the presence of MBL-producing bacteria in Ceará, with a high prevalence and mortality rate. Conclusion: These results indicate the depletion of therapeutic options against these pathogens and the urgent need to seek new treatments.

Downloads

Download data is not yet available.

References

Yang Y, Yan YH, Schofield CJ, et al. Metallo-β-lactamase-mediated antimicrobial resistance and progress in inhibitor discovery. Trends Microbiol. 2023;31(7):735-748. DOI:10.1016/j.tim.2023.01.013

Batista YA, Coelho JLG, Almeida NS, et al. Consequências da resistência antimicrobiana no tratamento das infecções hos- pitalares. Braz J Dev. 2021;7(3):29952-2996.DOI:https://doi.org/10.34117/bjdv7n3-625.

Silva TO, Ortega LN. A resistência antimicrobiana e custos de cuidado de saúde: uma revisão sistemática. Colloq Vitae 2021;13(2):25-39.

World Health Organization. Ten threats to global health in 2019; 2019.Available in: https://www.who.int/emergencies/ ten-threats-to-global-health-in-2019. Accessed on:25th March 2023.

Mauri C, Maraolo AE, Di Bella S et al. The Revival of Aztreo- nam in Combination with Avibactam against Metallo-β-Lac- tamase-Producing Gram-Negatives: A Systematic Review of In Vitro Studies and Clinical Cases. Antibiotics (Basel). 2021;10(8):1012.DOI:10.3390/antibiotics10081012.

Oliveira PS. New Delhi Metalobetalactamase: uma revisão bibliográfica [Trabalho de Conclusão de Curso]. Curso de Ba- charelado em Farmácia, Centro de Educação e Saúde, Univer- sidade Federal de Campina Grande, Cuité- PB, 2015.

Reddy N, Shungube M, Arvidsson PI, et al. A 2018–2019 patent review of metallo beta-lactamase inhibitors. Expert Opin Ther Pat. 2020;30(7):541-555. DOI:10.1080/13543776.2020.1767070.

Walsh TR, Toleman MA, Poirel L, et al. Metallo-β-lacta- mases: the quiet before the storm? Clin Microbiol Rev. 2005;18(2):306-325. DOI:10.1128/CMR.18.2.306-325.2005.

Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study.Lancet Infect Dis. 2010;10(9):597-602. DOI:https://doi. org/10.1016/S1473-3099(10)70143-2

Bertoncheli CM, Hörner R. Uma revisão sobre metalo-β-lac- tamases.Rev Bras Cienc Farm. 2008;44(4):577-599. DOI:ht- tps://doi.org/10.1590/S1516-93322008000400005.

Mojica MF, Bonomo RA, Fast W. B1-metallo-β-lactamases: where do we stand? Curr Drug Targets. 2016;17(9):1029- 1050. DOI:10.2174/1389450116666151001105622.

Jiménez Pearson MA, Galas M, Corso A, et al. Consenso latinoamericano para definir, categorizar y notificar patógenos multirresistentes, con resistencia extendida o panresistentes. Rev Panam Salud Publica. 2019;43:e65. DOI:10.26633/ RPSP.2019.65.

BRASIL. Boletim de Segurança do Paciente e Qualidade em Serviços de Saúde nº 16: Avaliação dos indicadores nacionais das Infecções Relacionadas à Assistência à Saúde (IRAS) e Resistência microbiana do ano de 2016. ANVISA-Segurança Do Paciente E Qual Em Serviços Saúde. 2016; 16: p.83.

Mojica MF, Rossi MA, Vila AJ, et al. The urgent need for me- tallo-β-lactamase inhibitors: an unattended global threat. Lancet Infect Dis. 2022; 22(1):e28-e34. DOI:10.1016/S1473-3099(20)30868-9.

BRASIL, Ministério da Saúde. NOTA TÉCNICA Nº 74/2022- CGLAB/DAEVS/SVS/MS. Informações sobre o aumento na frequência de isolamento de bactérias multirresistentes, em especial dos bacilos Gram-negativos (BGN) produtores da metalo-beta-lactamase “New Delhi” (NDM), e coprodutores de enzimas relacionadas à resistência aos carbapenêmicos (KPC e NDM); 2022.Availible in: https://brcast.org.br/wp-con- tent/uploads/2022/09/SEI_MS-0028220258-Nota-Tecnica-NDM-e-coproducao-carbapenemase.pdf. Accessed on: 30th january 2023.

Carvalho-Assef APD, Pereira PS, Albano RM et al. Isolation of NDM-producing Providencia rettgeri in Brazil. J Antimi- crob Chemother. 2013;68(12):2956-2957. DOI:10.1093/jac/ dkt298.

Yu H, González Molina MK, Carmona Cartaya Y et al. Mul- ticenter Study of Carbapenemase-Producing Enterobac- terales in Havana, Cuba, 2016-2021. Antibiotics (Basel). 2022;11(4):514. DOI:10.3390/antibiotics11040514.

Ghasemian A, Rizi KS, Vardanjani HR, et al. Prevalence of cli- nically isolated metallo-beta-lactamase-producing Pseudo- monas aeruginosa, coding genes, and possible risk factors in Iran. Iran J Pathol. 2018;13(1):1-9.

Goel V, Hogade SA, Karadesai SG. Prevalence of extended-spectrum beta-lactamases, AmpC beta-lactamase, and metallo-beta-lactamase producing Pseudomonas aeruginosa and Acinetobacter baumannii in an intensive care unit in a tertiary care hospital. Jundishapur J Microbiol. 2013;40(1):28-31.DOI: 10.5812/jjm.16436

Wang L, Zhou KH, Chen W, et al. Epidemiology and risk factors for nosocomial infection in the respiratory intensive care unit of a teaching hospital in China: A prospective surveillance during 2013 and 2015.BMC Infect Dis. 2019;19(1):145.DOI: 10.1186/s12879-019-3772-2.

Agondi RC, Rizzo LV, Kalil J, et al. Imunossenescência. Rev bras alergia imunopatol. 2012; 35(5):169-176.

Kasper DL, Hauser SL, Jameson JL, et al. Medicina interna deHarrison. 20. ed. Porto Alegre: AMGH, 2020.

Seo H, Kim HJ, Kim MJ, et al. Comparison of clinical outco- mes of patients infected with KPC-and NDM-producing Enterobacterales: a retrospective cohort study. Clin Microbiol Infect. 2021;27(8):1167.e1-1167.e8. DOI:10.1016/j. cmi.2020.09.043.

Garcia LM, César IC, Braga CA, et al. Perfil epidemiológico das infecções hospitalares por bactérias multidrogarresis- tentes em um hospital do norte de Minas Gerais. Rev Epidemiol Control Infect. 2013;3(2):45-49. DOI: https://doi.org/10.17058/reci.v3i2.3235.

Voidazan S, Albu S, Toth R, et al. Healthcare Associated Infec- tions-A New Pathology in Medical Practice?. Int J Environ Res Public Health. 2020;17(3):760. DOI:10.3390/ijerph17030760.

Cohen B, Choi YJ, Hyman S, et al. Gender differences in risk of bloodstream and surgical site infections. J Gen Intern Med. 2013;28(10):1318-1325. DOI:10.1007/s11606-013-2421-5.

Haukland EC, von Plessen C, Nieder C, et al. Adverse events in hospitalised cancer patients: a comparison to a general hos- pital population. Acta Oncol. 2017;56(9):1218-1223. DOI:10.1080/0284186X.2017.1309063.

Sanhudo ND. Liderança em enfermagem na prevenção e con- trole de infecções nos pacientes com câncer [Tese de Dou- torado]. Programa de Pós-Graduação em Enfermagem da Escola de Enfermagem Anna Nery da Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2013.

Battaglia CC, Hale K. Hospital-Acquired Infections in Critically Ill Patients With Cancer. J Intensive Care Med. 2019;34(7):523- 536.DOI:10.1177/0885066618788019.

Pileggi C, Mascaro V, Bianco A, et al. Ventilator Bundle and Its Effects on Mortality Among ICU Patients: A Meta-Analy- sis. Crit Care Med. 2018;46(7):1167-1174. DOI:10.1097/CCM.0000000000003136.

Ramirez P, Bassi GL, Torres A. Measures to prevent nosocomial infections during mechanical ventilation. Curr Opin Crit Care. 2012;18(1):86–92. DOI:10.1097/MCC.0b013e32834ef-3ff.

Álvarez CAG, Castro ALL, Gonzalez MJE, et al. Mecanismos de resistencia en Pseudomonas aeruginosa: entendiendo a un peligroso enemigo.Rev Fac Med. 2005;53(1):27-34.

Dawadi P, Khadka C, Shyaula M, et al. Prevalence of me- tallo-β-lactamases as a correlate of multidrug resistance among clinical Pseudomonas aeruginosa isolates in Nepal. Sci Total Environ. 2021; 850 (1):157975. DOI:10.1016/j.scito- tenv.2022.157975.

Tan X, Kim HS, Baugh K, et al. Therapeutic Options for Metallo-β-Lactamase Producing Enterobacterales. Infect Drug Resist. 2021;14:125-142. DOI:10.2147/IDR. S246174.

Nang SC, Azad MAK, Velkov T, et al. Rescuing the Last-Line Polymyxins: Achievements and Challenges. Pharmacol Rev. 2021;73(2):679-728. DOI:10.1124/pharmrev.120.000020.

Santos DES. Simulações atomísticas da polimixina B em mem- brana externas de bactérias gram-negativas susceptíveis ou resistentes: primeiros estágios do mecanismo de ação [ Dissertação de Mestrado]. Programa de Pós Graduação em Química do Departamento de Química Fundamental da Universidade Federal de Pernambuco, Recife, 2017.

Published

2024-01-08

How to Cite

1.
REIS HC, DE MELO AG, ROSA FL, ARAGÃO VN, OLIVEIRA RM, GIRÃO ES, LIRA ML, AMARAL GP, RODRIGUES JL. Delineation of infections in a university hospital by bacteria producers of metalobetalactamases: mapping the enemy!. Rev Bras Farm Hosp Serv Saude [Internet]. 2024Jan.8 [cited 2024Nov.22];14(4):979. Available from: https://rbfhss.org.br/sbrafh/article/view/979

Issue

Section

ORIGINAL ARTICLES

Most read articles by the same author(s)