Evaluation of potential interactions of oral medications prescribed in a kidney and liver transplant unit

Authors

DOI:

https://doi.org/10.30968/rbfhss.2023.143.0924

Abstract

Objective: To identify, quantify and classify, according to the degree of severity, potential drug interactions (PDI) present in prescriptions for oral medications for patients admitted to a transplant unit. Methods: This is a descriptive and retrospective cross-sectional study based on the prescriptions of patients admitted to a kidney and liver transplantation unit. Where data were collected from 831 prescriptions and from this total, 223 were selected, which were submitted to the tracking of possible drug-drug interactions using the online tool Micromedex®. Results: The selected prescriptions had between 1 and 21 drugs (mean of 8 ± 4), with 216 potential drug interactions identified; of this total, the following results were found regarding the severity of these potential events: major (62.03%), moderate (31.94%) and minor (6.01%). Through the analysis carried out, a total of 66.66% (n=46) of the evaluated patients presented potential drug interactions in their prescriptions, with an average of 3.13 PDI per patient. It was possible to observe that more than 50% of patients had potential drug interactions in their prescriptions, among which immunosuppressants were involved in 49.52% of all interactions. Conclusion: It was possible to observe that the high frequency of potential drug interactions in transplant patients is possibly due to the amount of drugs prescribed concomitantly, due to the various comorbidities that these patients have, since the greater the number of drugs prescribed, the greater the probability of having this type of interaction. The most common PDIs were of greater severity, which highlights the importance of patient monitoring for adequate decision-making by the clinical staff, promoting patient safety.

Downloads

Download data is not yet available.

References

Aliança Brasileira pela Doação de Órgãos e Tecidos (ADOTE). Informe-se, 2021. Disponível em: https://www.adote.org.br/informe-se. Acesso em: 01 de março de 2022.

Ministério da Saúde. Portaria Conjunta nº 5, de 22 de junho de 2017. Aprova o Protocolo Clínico e Diretrizes Terapêuticas da Imunossupressão no Transplante Hepático em Adultos. Disponível em: . Acesso em: 13/03/2022.

Kahan BD, Koch SM. Current immunosuppressant regimens: considerations for critical care. Current opinion in critical care. 2001;7(4): 242-250. DOI: 10.1097/00075198-200108000-00006.

Leone R, Magro L, Moretti U, et al. Identifying adverse drug reactions associated with drug-drug interactions: data mining of a spontaneous reporting database in Italy. Drug Saf; 33:667-75. DOI: 10.2165/11534400-000000000-00000.

Pirmohamed M. Drug-drug interactions and adverse drug reactions: separating the wheat from the chaff. Wiener klinischeWochenschrift. 2010; 122(3): 62-64. DOI: 10.1007/s00508-010-1309-1.

Agência Nacional de Vigilância Sanitária. Resolução RDC nº 47 de 08 de setembro de 2009. Estabelece regras para elaboração, harmonização, atualização, publicação e disponibilização de bulas de medicamentos para pacientes e para profissionais de saúde. Disponível em: https://mooc.campusvirtual.fiocruz.br/rea/medicamentos-da-biodiversidade/RDC_47_09.pdf. Acessado em 02 de março 2022.

Monteiro C, Marques FB, Ribeiro CF. Interações medicamentosas como causa de iatrogenia evitável. Rev Port Clin Geral. 2007;23:63-73. DOI: 10.32385/rpmgf.v23i1.10322.

Grattagliano I, Portincasa P, D’Ambrosio G, et al. Avoiding drug interactions: Here’s help. J Fam Pract. 2010;59(6):322-9. PMID: 20544064.

Akbulut M, Urun Y. Onco-cardiology: Drug-drug interactions of antineoplastic and cardiovascular drugs. Crit Rev Oncol Hematol. 2020;145:102822. DOI: 10.1016/j.critrevonc.2019.102822.

Al-hajje AH, Atoui F, Awada S, et al. Drug-related problems identified by clinical pharmacist’s students and pharmacist’s interventions. Ann Pharm Fr. 2012;70(3):169-176. DOI: 10.1016/j.pharma.2012.02.004.

Melgaço TB, Carrera JS, Nascimento DEB, et al. Polifarmácia e ocorrências de possíveis interações medicamentosas. Rev Para Med. 2011;25(1). ID: lil-609164.

IBM Micromedex® Solutions. Drug Interactions Policy. Disponível em: https://www.ibm.com/downloads/cas/ZVLXDL7X. Acesso em: 20 de agosto de 2022.

Micromedex®. Truven health analytics LLC. April de 2017. Disponível em: https://www.periodicos.capes.gov.br/images/documents/Micromedex%20UserGuide.pdf. Acesso em: 09 de agosto de 2022.

Word Health Organization Collaborating Centre For Drug Statistics Methodology (WHOCC). Anatomical Therapeutic Chemical Classification (ATC Code). Disponível em: https://www.whocc.no/atc_ddd_index/. Acesso em: 01 de junho de 2022.

Miot HA. Tamanho da amostra em estudos clínicos e experimentais. Jornal Vascular Brasileiro. 2011;10:275-278. DOI: 10.1590/S1677-54492011000400001.

Baba RK, Vaz MSMG, Costa J. Agrometeorological data correction using statistical methods. Rev Bras Meteorol. 2014;29(4):515-526. DOI: 10.1590/0102-778620130611.

Astagraf XL (tacrolimus). Astellas Pharma US, Inc. Disponível em: https://www.astellas.com/us/system/files/astagrafxl-prescribing-information.pdf. Acessado em: 02 de Agosto 2022.

Lo A, Egidi MF, Gaber LW, et al. Observations on the use of sirolimus and tacrolimus in high-risk renal transplant recipients. Transplant Proc. 2003; 35(3):S105-S108. DOI: 10.1016/s0041-1345(03)00238-0.

RAPAMUNE (sirolimus). Wyeth Pharmaceuticals. Disponível em: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?-setid=3275b824-3f82-4151-2ab2-0036a9ba0acc. Acesso em: 02 de agosto 2022.

Zuo X, Zhou Y, Zhang B, et al. Effect of CYP3A5*3 polymorphism on pharmacokinetic drug interaction between tacrolimus and amlodipine. Drug Metabolism Pharmacokinet. 2013;28(5):398-405. DOI: 10.2133/dmpk.dmpk-12-rg-148.

Bremer SCB, Reinhardt L, Sobotta M, et al. Pantoprazole Does not Affect Serum Trough Levels of Tacrolimus and Everolimus in Liver Transplant Recipients. Front Med. 2018;5:320. DOI: 10.3389/fmed.2018.00320.

Tran-duy A, Connell NJ, Vanmolkot FH, et al. Use of proton pump inhibitors and risk of iron deficiency: a population-based case-control study. J Intern Med. 2019;285(2):205-214. DOI: 10.1111/joim.12826.

Mudge DW, Atcheson B, Taylor PJ, et al. The effect of oral iron administration on mycophenolate mofetil absorption in renal transplant recipients: a randomized, controlled trial. Transplantation. 2004;77(2):206-209. DOI: 10.1097/01.TP.0000100446.44001.00.

Lorenz M, Wolzt M, Weigel G, et al. Ferrous sulfate does not affect mycophenolic acid pharmacokinetics in kidney transplant patients. Am J Kidney Dis. 2004;43(6):1098-1103. DOI: 10.1053/j.ajkd.2004.03.021.

Ducray PS, Banken L, Gerber M, et al. Absence of an interaction between iron and mycophenolate mofetil absorption. Br J Clin Pharmacol. 2006;62(4):492-5. DOI: 10.1111/j.1365-2125.2005.02541.

Moura CS, Ribeiro AQ, Magalhães SMS. Avaliação de interações medicamentosas potenciais em prescrições médicas do Hospital das Clínicas da Universidade Federal de Minas Gerais (Brasil). Lat Am J Pharm. 2007;26(4):596-601.

Drug Interactions Checker. Drug information Online. Disponível em: https://www.drugs.com/drug_interactions.html. Acesso em: 01 de junho de 2022.

Published

2023-08-15

How to Cite

1.
SOUSA GA, RODRIGUES BF, MELO DT, SOUSA JA, OLIVEIRA LM, MESQUITA RF, OLIVEIRA AB. Evaluation of potential interactions of oral medications prescribed in a kidney and liver transplant unit. Rev Bras Farm Hosp Serv Saude [Internet]. 2023Aug.15 [cited 2023Sep.29];14(3):924. Available from: https://rbfhss.org.br/sbrafh/article/view/924

Issue

Section

ORIGINAL ARTICLES